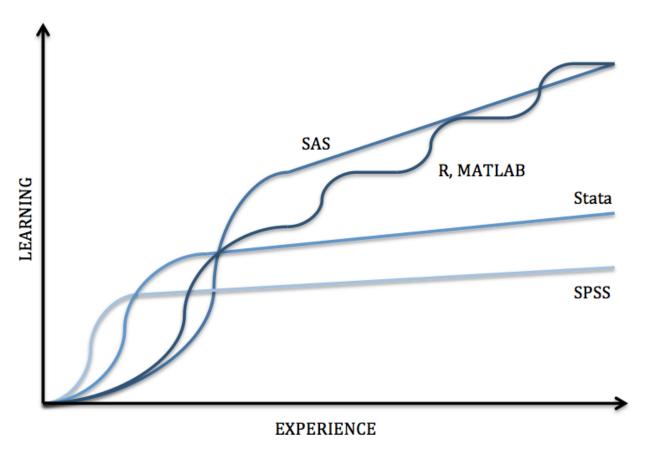
Introduction to STATA

Adrian Rohit Dass
Institute of Health Policy, Management, and Evaluation
Canadian Centre for Health Economics
University of Toronto

September 20, 2024


STATA for Health Economics

- A survey conducted to IHPME health economics students suggested the following research interests
 - Working with data
 - Common tasks: reading in data, creating new variables, data subsets, etc.
 - Applied econometrics
 - Common tasks: descriptive analysis, regression analysis, etc.
 - Economic Evaluation
 - Common tasks: model building (Markov, Microsim, etc.), sensitivity analysis, etc.

Outline

- Why use STATA?
- Reading/Cleaning data
- Regression Analysis
- Post-estimation Diagnostic Checks
- Other Topics in STATA
 - Do File and applied example
 - Mata and applied example
- STATA Resources

Learning Curves of Various Software Packages

Source: https://sites.google.com/a/nyu.edu/statistical-software-guide/summary

Summary of Various Statistical Software Packages

Software	Interface*	Learning Curve	Data Manipulation	Statistical Analysis	Graphics	Specialties
SPSS	Menus & Syntax	Gradual	Moderate	Moderate Scope Low Versatility	Good	Custom Tables, ANOVA & Multivariate Analysis
Stata	Menus & Syntax	Moderate	Strong	Broad Scope Medium Versatility	Good	Panel Data, Survey Data Analysis & Multiple Imputation
SAS	Syntax	Steep	Very Strong	Very Broad Scope High Versatility	Very Good	Large Datasets, Reporting, Password Encryption & Components for Specific Fields
R	Syntax	Steep	Very Strong	Very Broad Scope High Versatility	Excellent	Packages for Graphics, Web Scraping, Machine Learning & Predictive Modeling
MATLAB	Syntax	Steep	Very Strong	Limited Scope High Versatility	Excellent	Simulations, Multidimensional Data, Image & Signal Processing

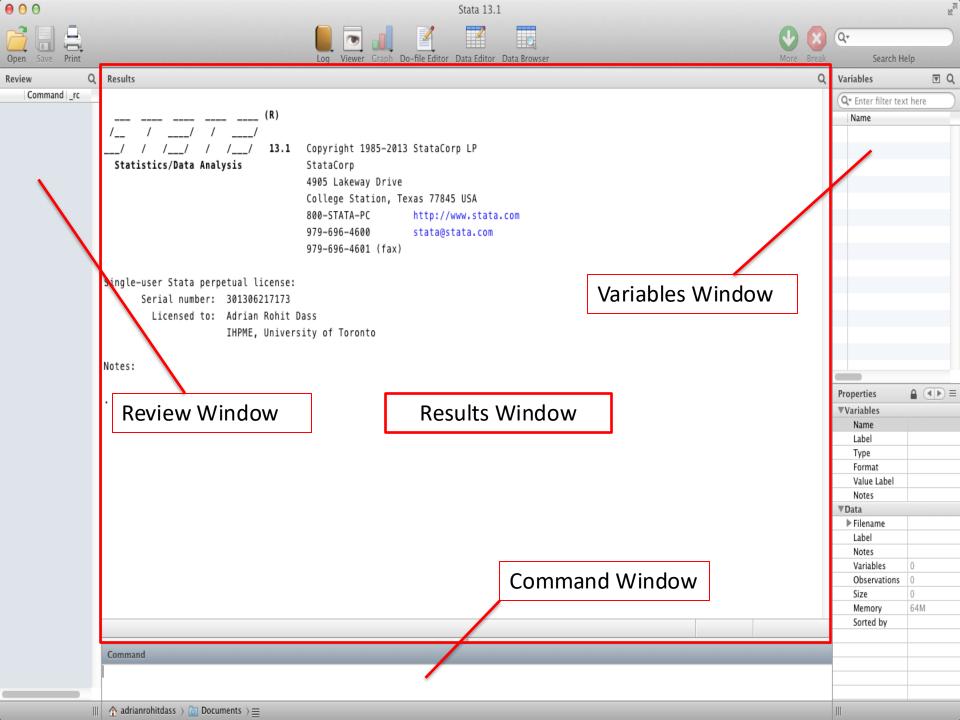
^{*} The primary interface is bolded in the case of multiple interface types available.

Source: https://sites.google.com/a/nyu.edu/statistical-software-guide/summary

Why STATA?

- Moderate learning curve
- Widely used in economics and other social sciences
- Feature rich for analyzing various types of data (survey data, panel data, etc.)
- Wide array of free, user-written routines to expand the scope of STATA's capabilities
- Support for export of regression results to tables through packages such as "estout" (STATA 16 or older) and/or Tables feature (STATA 17)

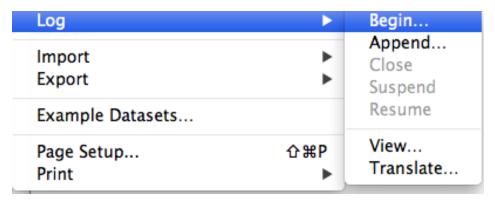
STATA Purchasing options (from UofT)


For details, please see here:

https://onesearch.library.utoronto.ca/ic/stat a-gradplan-u-t

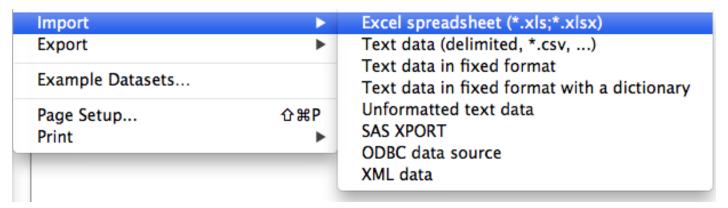
Reading/Cleaning data

STATA Basics


- Contains a menu and syntax based interface
- Prior programming experience is not required, but can be helpful (especially with the syntax based .do files)
- Case sensitive, so be careful:
 l.e.
 - regress y x results will result in a successful OLS estimation (if everything else is right)
 - Regress y x results <u>will</u> in an error message

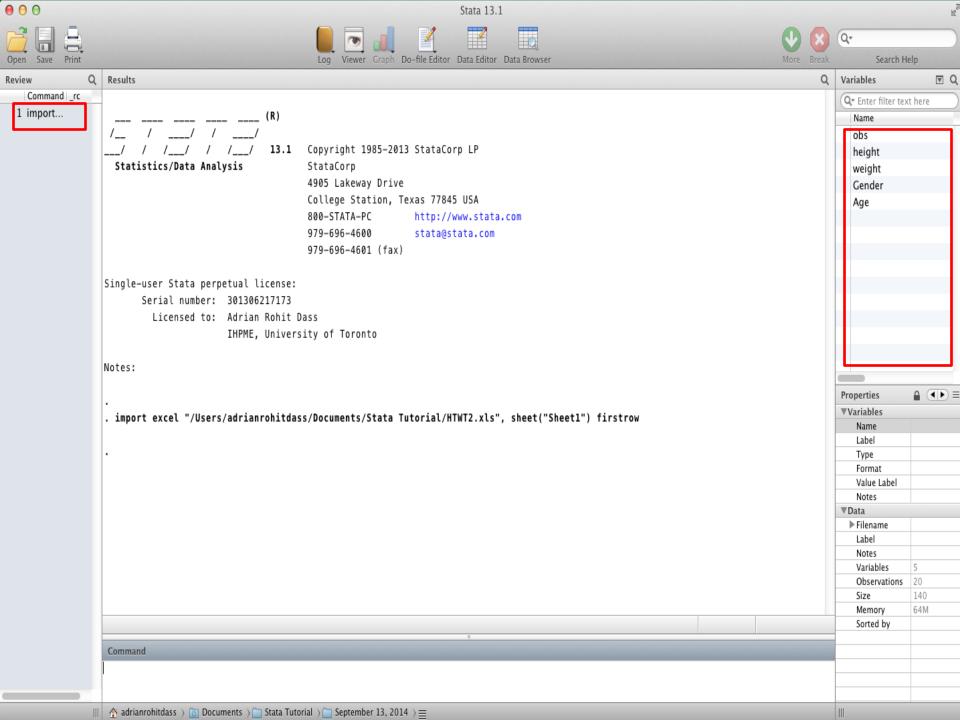
Starting a Log File

This should generally be your *first* step when using Stata


- Menu:
 - File \rightarrow Log \rightarrow Begin:

- Stata will prompt you to name the file. Pick a creative name (E.g. logfile1), then click ok
- At this point, Stata will record everything you do (importing data, running commands, regression output, etc)
- Syntax:
 - log using filename [, append replace [text|smcl] name(logname)]

Importing Data into Stata


- Menu
 - File → Import → Choose appropriate option:

- .csv (Comma Separated) is a common option, but .xls (Microsoft Excel Format) and other formats are compatible too
- Syntax
 - import excel [using] filename [, import excel options]
 - For .csv files, command changes to import delimited

Importing Data into STATA (Microsoft Excel (.xls))

	sers/	adrianr	ohitdas	s/Docur	nents	/Stata	Tutorial/	HTWT2	2.xls	Brov	vse
Nor	kshe	et:					Cell ran	ge:			
Sheet1 A1:E21 \$						A1:E21					
✓ Import first row as variable names Variable case: preserve ‡ ☐ Import all data as strings Preview: (showing rows 2–21 of 21)											
	obs			Gender							
2	1	5	140	0	13						
3	2	9	157	0	15						
4	3	13	205	0	18						
-	4	12	198	0	NA						
5		10	162	0	20						
5 6	5		174	1	25						
5	6	11	1/4								
5 6	_	11 8	150	1	24						
5 6 7	6				24 13						
5 6 7 8	6 7	8	150	1							

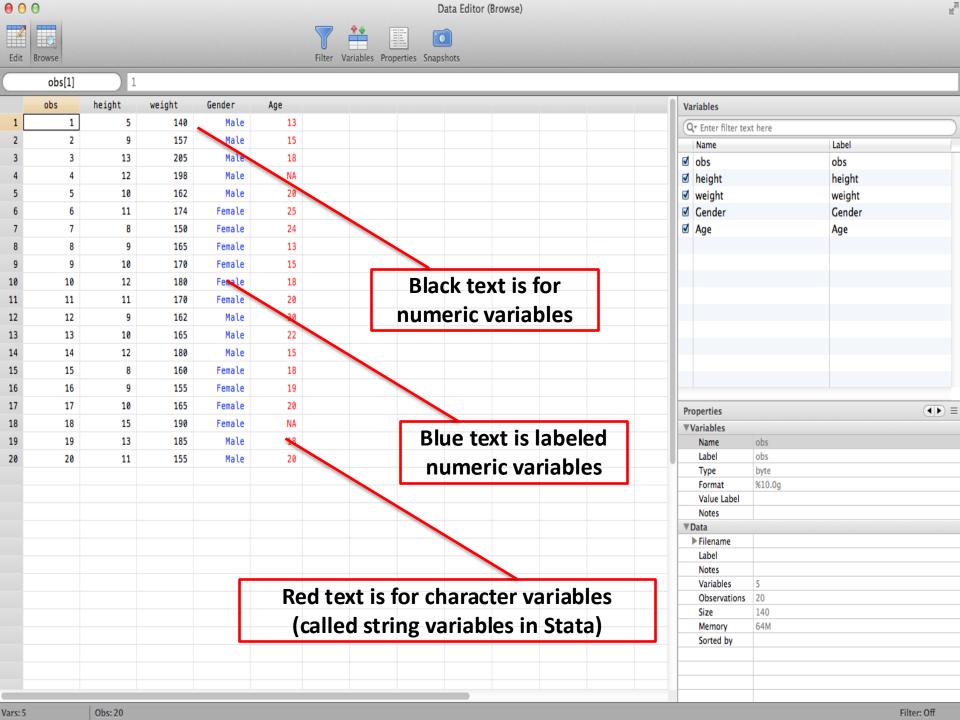
Starting off

Type describe to obtain some useful information about your dataset:

obs: 20 vars: 5 size: 140

Contains data

storage display value
variable name type format label variable label


obs byte %10.0g obs

obs %10.0g height byte height %10.0g weight weight int Gender byte %10.0g Gender str2 %9s Age Age

Sorted by:

Note: dataset has changed since last saved

To look at your data, type browse

Convert Character variable to Numeric

Make use of Stata's destring command:

destring [varlist] , {generate(newvarlist)|replace}
[destring_options]

Eg:

destring age, replace ignore(NA)

Changing Existing variables: rename

- Command: rename
- changes the name of an existing variable

 Example, rename variable 'ZGMFX10A' as 'height' rename ZGMFX10A height

Working with Labels

label give descriptions to variables or data sets

- To label the dataset in memory:
- label data "National Population Health Survey"
- To label a variable:
- label var healthstat "Self-Reported Health Status"
- To label different numeric values the variable may take:
- **label define** vlhealthstat 1 "Excellent" 2 "Very Good" 3 "Good" 4 "Fair" 5 "Poor"
- label values healthstat vlhealthstat

Obtaining basic summary statistics

• Summarize command: Use to obtain basic summary statistics of 1 or more variables (mean, standard deviation, min, max, etc.)

summarize [varlist] [if] [in] [weight] [, options]

. summarize weight height

Variable	0bs	Mean	Std. Dev.	Min	Max
weight	20	169.4	16.32692	140	205
height	20	10.35	2.207046	5	15

 Correlate command: Creates a matrix of correlation or covariance coefficients for 2 or more variables

correlate [varlist] [if] [in] [weight] [, correlate_options]

. correlate height weight (obs=20)

	height	weight
height	1.0000	
weight	0.8620	1.0000

tabulate

- command: tabulate
- Calculates and displays frequencies for one or two variables
- Syntax:
- tabulate varname [if] [in] [weight] [, options]

. tab KEYSEX

KEYSEX	Freq.	Percent	Cum.
Male Female	4,599 4,385	51.19 48.81	51.19 100.00
Total	8,984	100.00	

More detailed descriptives

Use tabstat command

tabstat varlist [if] [in] [weight] [, options]

tabstat earnings, s(sum)

variable	sum
earnings	6.7

 The example above calculates the sum of the variable, but you could specify other statistics as well (median, range, etc.). If you don't specify a particular statistic at the end, then tabstat will generate the mean

Creating a new variable: generate

- command: generate
- Syntax:
- generate newvar = exp [if exp] [in range]
- Example:
- generate age sq=age*age
- Notes:

Can type generate or gen for short

Changing Existing variables: replace

Command 'replace' changes the contents of an existing variable

Syntax:

replace oldvar = exp [if exp] [in range]

- replace can be using in many circumstances, including
- Creating binary and categorical variables
- Fixing values

Ex: Replace responses coded as "no response" (-1 in this case) with missing values

replace variable = . if variable == -1

Create a Binary Variable

- To create a binary variable (0 / 1):
- Generate a variable equal to 0 for all observations
- Replace it to be 1 for selected observations

Example, create a binary variable for people with income over \$80,000:

```
gen highinc=0
replace highinc=1 if hh_inc>80000
```

Recode Variable

- command: recode
- Syntax:
- recode varlist (rule) [(rule) ...] [,
 generate(newvar)]
- Example

```
recode sah (1 \ 2 = 1) \ (3 = 2) \ (4 \ 5 = 3), gen(sahrecode)
```

Exploring Missing Values

- Missing values are given by "." in STATA
- To count the number of missing values in all variables in dataset, use user-written command tabmiss
 - To install, type <u>findit tabmiss</u> in command window
 - To use, type tabmiss
- Important Note: you can use "findit" to install other user written commands, as well as help files for commands in STATA
- Can also use tab var, m (one variable)

Saving data

If you've imported data into STATA from a spreadsheet, text file, etc., you may want to save it as a STATA dataset.

- This is particularly useful for large datasets, as STATA can generally read its own datasets faster than importing raw data
- Menu: go File → Save (will give you an option to replace the data if it already exists)
- Syntax: save [filename] [, save_options]

Graphing/Plotting Data

Two-way scatter plot

twoway scatter yvar xvar

Two-way line plot

twoway line yvar xvar

 Two-way scatter plot with linear prediction from regression of y on x

twoway (scatter yvar xvar) (lfit yvar xvar)

 Two-way scatter plot with linear prediction from regression of y on x with 95% CI

twoway (scatter yvar xvar) (lfitci yvar xvar)

Regression Analysis

Fitting a Linear Model To The Data

General notation:

regress depvar [indepvars] [if] [in] [weight] [, options]

Where:

Y is our *dependent* variable X is our *independent* variable(s) Note: You may type "reg" instead of "regress"

Fitting a Linear Model To The Data

Stata Output:

. reg weight h	neight			ows ation <i>YX</i>)				
Source	ss	df		MS		Number of obs		20
Model Residual	3763.76056 1301.03944	1 18		.76056 799688		F(1, 18) Prob > F R-squared	= 0.000 = 0.74	00 31
Total	5064.8	19	266.	568421		Adj R-squared Root MSE	= 0.728 = 8.503	
weight	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interva	 l]
height _cons	6.377093 103.3971	.8837 9.3	324 3421	7.22 11.07	0.000 0.000	4.520441 83.77006	8.2337	

Post Estimation

Post Estimation

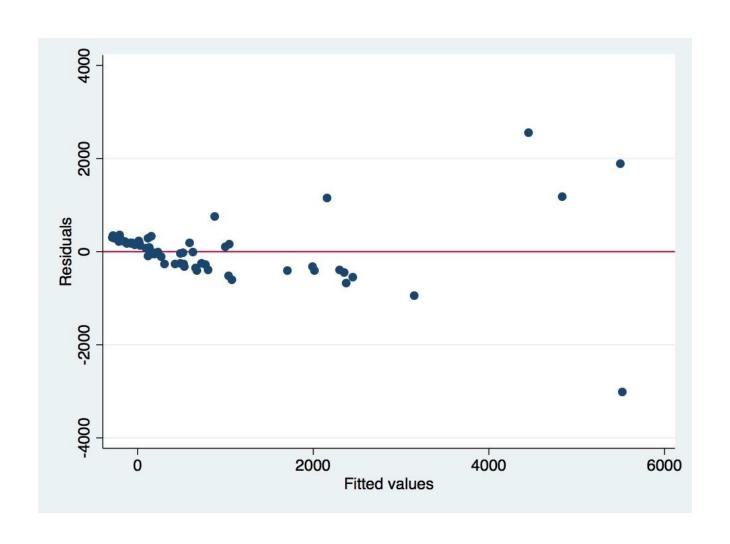
Obtaining residuals

predict residuals, residuals

NB: The "residuals" after predict is just the name you want to give to the residuals. You can change this if you want to

Obtaining fitted values

predict fittedvalues, xb


Residual Diagnostic and Heteroskedasticity testing

- OLS regression assumes homoskedasticity for valid hypothesis testing. We can test for this after running a regression
- Examine residual pattern from the residual plot

rvfplot, yline(0)

Heteroskedasticity test estat hettest

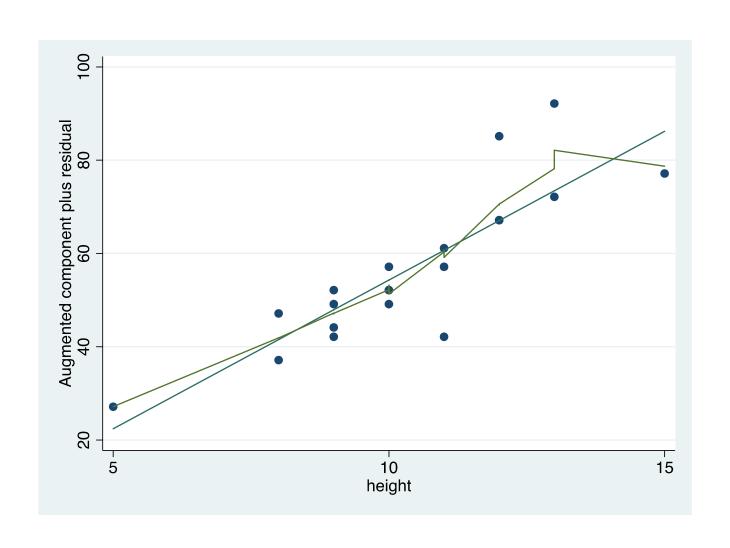
RVF Plot

Test for Heteroskedasticity

estat hettest

```
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
   Variables: fitted values of VOL

chi2(1) = 171.05
   Prob > chi2 = 0.0000
```


Reject the null (no heteroskedasticity) in favour of the alternative (there is heteroskedasticity of some form).

Linearity testing

- OLS assumes a linear relationship between the Y and X's. We can test for this after a regression:
- Command:

acprplot var, lowess

ACPRPLOT Stata

Testing for multicollinearity

OLS regression assumption: independent variables are not too strongly *collinear*

Detection:

Correlation matrix
 correlate varlist (before regression)

Variance Inflation Factor
 vif (after regression)

Specification testing

- To see if there is omitted variables from the model, or if our model is miss-specified
- Syntax: estat ovtest

```
. estat ovtest
```

```
Ramsey RESET test using powers of the fitted values of crime Ho: model has no omitted variables F(3,\ 44) = \qquad \qquad \textbf{6.45} \\ Prob > F = \qquad \textbf{0.0010}
```

Standard Errors

- Heteroskedasticity-robust standard errors
 - regress y $x_1 x_2...x_n$, vce(robust)
- Cluster robust standard errors
 - regress y $x_1 x_2...x_n$, vce(cluster *clusterid*)
- Bootstrapped standard errors
 - regress y $x_1 x_2...x_n$, vce(bootstrap)

Storing Estimation Results

 STATA can store the results of your regression via the estimates command:

estimates store name

- This can be very useful in analyzing regression results after running multiple models
- estout package (needs to be installed) can be used to create tables from the regression results that can be exported from STATA. To install, type: ssc install estout, replace

http://repec.org/bocode/e/estout/esttab.html

Regression commands for other types of outcome variables

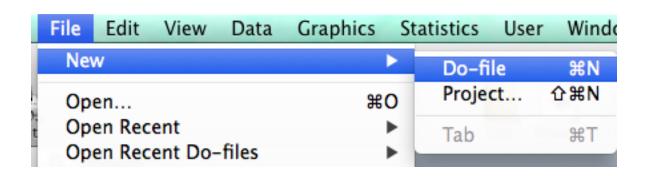
- Binary outcomes: probit or logit (help probit; help probit postestimation) (help logit; help logit postestimation)
- Ordered discrete outcomes: oprobit or ologit (help oprobit; help oprobit postestimation)
 (help ologit; help ologit postestimation)
- Categorical outcomes: mprobit or mlogit (help mprobit; help mprobit postestimation) (help mlogit; help mlogit postestimation)

Panel Data Econometrics

- Pooled Linear Regression
 regress depvar [indepvars] [if] [in] [weight] [, options]
- Random Effects
 xtreg depvar [indepvars] [if] [in] [, re RE options]
- Fixed Effects
 xtreg depvar [indepvars] [if] [in] [weight], fe
 [FE options]

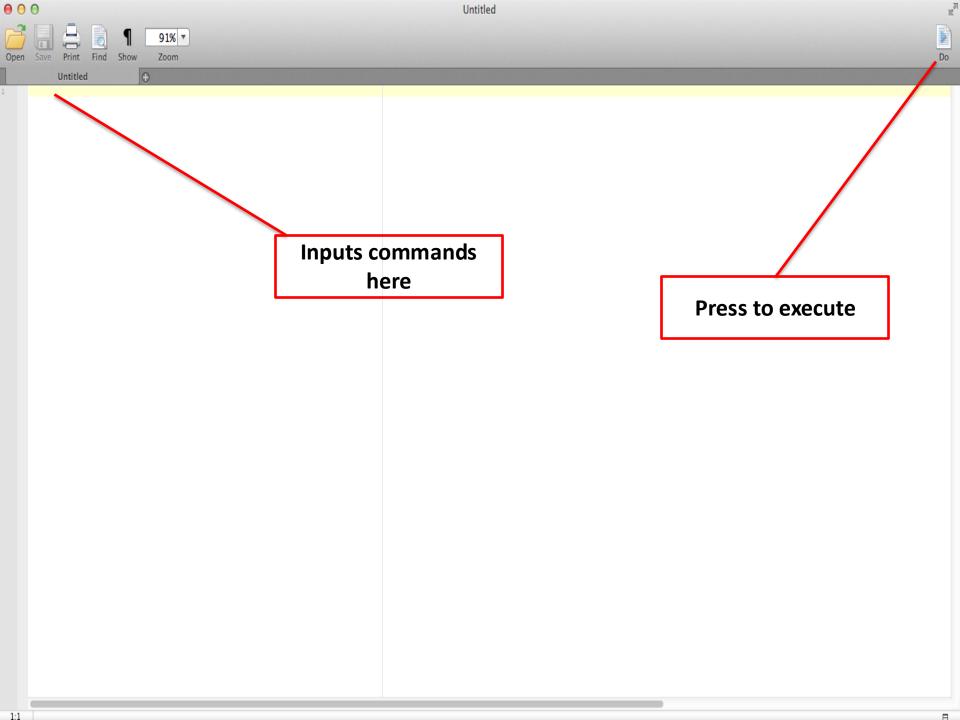
Other Topics in STATA

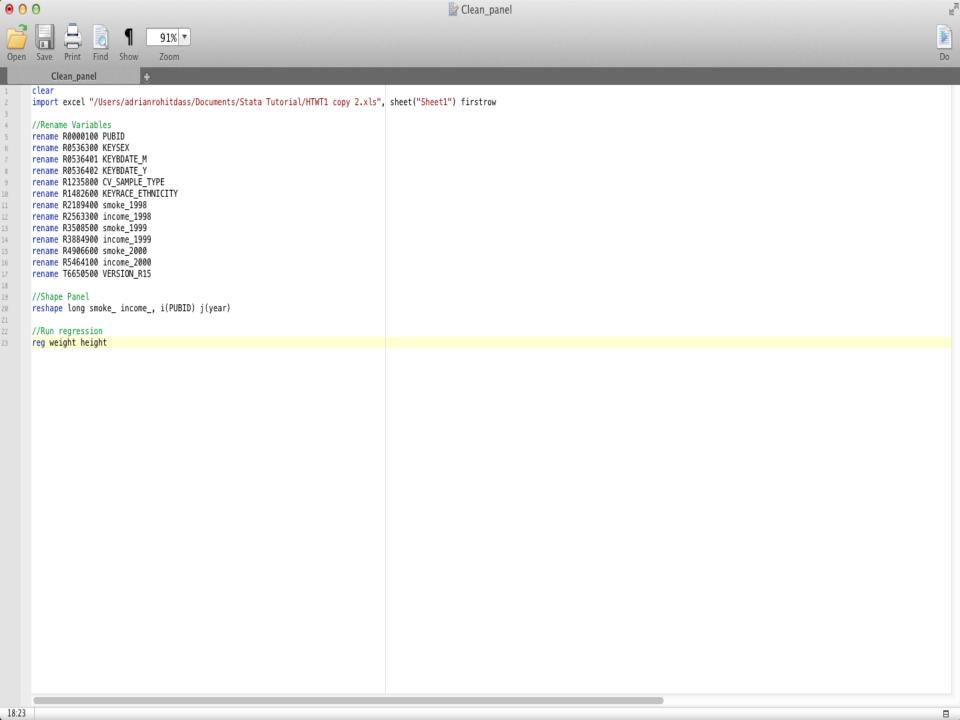
Working With Do-Files


Motivation

Why bother?

- 1) We can ovoid tediously running the same set of commands over and over again through the menu/command window
- 2) Creates a document listing *all* the commands we've run
- 3) Increases our productivity with STATA!


How to get to do file editor:


• File \rightarrow New \rightarrow Do-file

 Or "Do-file Editor" button at top (depending on which version of STATA you have)

Applied Example

- Analysis of Health Expenditure Data in Jones et al. (2013) Chapter Three
- The data covers the medical expenditures of US citizens aged 65 years and older who qualify for health care under Medicare.
 - Outcome of interest is total annual health care expenditures (measured in US dollars).
 - Other key variables are age, gender, household income, supplementary insurance status (insurance beyond Medicare), physical and activity limitations and the total number of chronic conditions.
- Data can be downloaded from here (mus03data.dta): <u>https://www.stata-press.com/data/musr.html</u>

Code From Applied Example

cd "/Users/Desktop/STATA Example" //Change Working Directory log using "mylogfile.smcl", replace //start log file clear //remove variables from STATA use "mus03data.dta" //Load Data describe //Description of data (output will remain in log file) table posexp //Frequency table (output will remain in log file) drop if posexp==0 //Remove individuals with \$0 in health expenditures (following example) *Regression* reg to texp female income suppins phylim actlim totchr //Regression without age eststo reg1 //Store results reg to texp age female income suppins phylim actlim totchr //Regression with age (following example) eststo reg2 //Store results rvfplot, yline(0) //RVF Plot graph export rvfplot.png, replace //Save plot in working directory estat hettest //Heteroskedasticity test esttab reg1 reg2 using "myresults.csv", cells(b(fmt(3)star) se(par)) stats (N r2) replace //export results *Robust regression* reg totexp female income suppins phylim actlim totchr, robust //Regression without age, HC robust eststo robust 1 //Store results reg totexp age female income suppins phylim actlim totchr, robust //Regression with age (following example), HC robust eststo robust 2 //Store results esttab robust1 robust2 using "myresultsro bust.csv", cells(b(fmt(3)star) se(par)) stats (N r2) replace //export results log close //Close log file

mata

mata (continued)

What is mata?

"From STATA manual: Mata is a matrix programming language that can be used by those who want to perform matrix calculations interactively and by those who want to add new features to Stata."

Source: https://www.stata.com/manuals/m.pdf

To start and stop a mata session:

```
. mata //start mata session
/*Insert STATA mata matrix commands here*/
end // end mata session
```

mata Example Functions

 Create general nxk matrix (named A) with same value across rows and columns

```
A = J(n,k,val)
```

Create matrix of any dimensions manually (named B)

```
B = (0.95, 0.05 \setminus 0, 1)
```

Extract ith row

```
A[i,]
```

Extract jth column

```
A[,j]
```

Matrix multiplication

k

Element wise multiplication

.*

For more commands, please see https://www.stata.com/manuals/m.pdf

Applied Example

Markov model with the following transitional probability matrix

Н	S	D
0.9	0.08	0.02
0	0.8	0.2
0	0	1

Everybody in the model starts in H

Can we use mata and matrix algebra to solve for the second period health states?

Code for applied example

. mata

mata clear

A = J(2,3,0) // 2X3 matrix of 0s (Two time periods, 3 health states) P = 0.9, 0.08, 0.02\0,0.8, 0.2\0,0,1 //3x3 transitional probability matrix

A[1,] = 1, 0, 0 //Initial health states

A[2,] = A[1,] * P //Health states in period 2

A //Display entire matrix

end

Conclusions

- Stata is a widely used software package for data manipulation and statistical analysis.
- Moderate learning curve with user friendly interface.
- Wide array of commands to fit econometric models, with possibility of adding user-written commands to expand functionality.
- Mata programming for working with matrices.

STATA Resources

STATA Online Resources

 STATA manuals are freely downloadable from the above site

http://www.statapress.com/manuals/documentation-set/

 Typing help [topic] in the command window is also useful, but the online manuals generally contain more detail/examples

STATA Online Resources

UCLA Institute for Digital Research and Education

 List of topics and STATA resources can be found here:

http://www.ats.ucla.edu/stat/stata/webbooks/reg/default.htm

Other STATA Resources

- Jones, A.M., Rice, N., d'Uva, T.B., Balia, S. 2013. <u>Applied Health Economics Second Edition</u>, Routledge Advanced Texts in Economics and Finance. Taylor & Francis
- Cameron, A.C., Trivedi, P.K. 2010. Microeconometrics Using Stata Revised Edition, Stata Press books.
- Allison, P.D. 2009. <u>Fixed Effects Regression Models</u>, Quantitative Applications in the Social Sciences. SAGE Publications.
- Wooldridge, J. M. (2010). <u>Econometric analysis of cross</u> section and panel data. MIT press
 - Solutions manual (sold separately) contains STATA code and output

Thanks for Listening

Good luck with STATA!